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Abstract

The usual expression for the longitudinal wake field in
terms of the impedance is exact only for the model in which
the source of the field is a rigid bunch. To account for a de-
forming bunch one has to invoke the complete impedance,
a function of both wave number and frequency. A compu-
tation of the corresponding wake field would be expensive,
since it would involve integrals over frequency and time
in addition to the usual sum over wave number. We treat
the problem of approximating this field in an example of
current interest, the case of coherent synchrotron radiation
(CSR) in the presence of shielding by the vacuum chamber.

————–
Consider a rigid bunch moving on a circular trajectory

of radius R. A test particle feels a voltage

V (θ, t) = ω0Q

∞
∑

n=−∞

ein(θ−ω0t)Z(n)λn , (1)

where θ − ω0t is the azimuthal angle between the test par-
ticle and the reference particle, the latter having revolution
frequency ω0 = β0c/R. The impedance at azimuthal mode
number n (wave number n/R) is Z(n). The mode ampli-
tude λn is the Fourier transform of the line density λ(θ) in
the bunch rest frame. With

∫

λ(θ)dθ = 1 the total charge
is Q. For the case of a deforming bunch one’s first inclina-
tion is merely to replace λn in (1) by λn(t). The resulting
formula (or its equivalent statement in terms of a wake po-
tential) has been used in dynamical calculations based on
the Vlasov-Fokker-Planck equation [1, 2, 3, 4], and in ear-
lier macroparticle simulations. In such work λn (or λ(θ)) is
updated at each time step according to the values of exter-
nal and coherent forces at the previous step. Although the
calculations seem successful in many respects, the simple
replacement λn → λn(t) is a first approximation of un-
certain accuracy, especially in an unstable regime of rapid
bunch evolution.

Our object here is to derive this first approximation
and systematic corrections. We do so in an analytically
solvable model, the case of particles on circular trajecto-
ries between two infinite parallel plates, perfectly conduct-
ing. The plates represent the vacuum chamber, which sup-
presses CSR at wavelengths greater than a certain “shield-
ing cutoff”. This model has considerable utility in spite of
its simplified view of a real system; it led to interesting re-

∗Work supported in part by Department of Energy contract DE-FG03-
99ER41104

† e-mail:warnock@slac.stanford.edu

sults on instabilities induced by CSR in the work of Refs.
[2, 3].

The field equations are solved in cylindrical coordinates
(r, θ, y), with y-axis perpendicular to the plates and origin
midway between the plates of separation h. We allow an
arbitrary but fixed distribution of charge in the y-direction,
with density H(y) ,

∫

H(y)dy = 1. The full charge den-
sity has the form ρ(θ, t) = Qλ(θ−ω0t, t)H(y)δ(r−R)/R.
We make a Laplace transform of the Maxwell equations
and the charge/current density in time, assuming that the
charge and the fields are zero before t = 0. We also
make Fourier transforms in θ and y, the Fourier series in
y chosen to satisfy the boundary conditions of fields on
the plates. Then the transformed field equations can be
solved in terms of Bessel functions. The Fourier/Laplace
transform of the longitudinal electric field (averaged over
the vertical distribution H(y)) will be denoted as Ê(n, ω).
Here ω = u + iv , v > 0 is a complex frequency,
while the Laplace transform variable conjugate to time is
s = −iω. By linearity of the field equations, −2πRÊ is
proportional to the corresponding transform of the current,
with a proportionality constant Z(n, ω) called the complete
impedance: −2πRÊ(n, ω) = Z(n, ω)Î(n, ω).

The transform of the current is

Î(n, ω) =
Qω0

2π

∫ ∞

0

dtei(ω−nω0)tλn(t) , (2)

λn(t) =
1

2π

∫ 2π

0

dθe−inθλ(θ, t) . (3)

Compare the case of a rigid bunch existing for all time, for
which

Î(n, ω) = Qω0δ(ω − nω0) . (4)

The impedance has the form

Z(n, ω) =
Z0(πR)

2

β0h

∞
∑

p=1

Λp

[

ωβ0

c
J ′
|n|(γpR)H

(1)′
|n| (γpR)

+
(αp
γp

)2 n

R
J|n|(γpR)H

(1)
|n| (γpR)

]

. (5)

Here H
(1)
n = Jn + iYn, where Jn and Yn are Bessel func-

tions of the first and second kinds, Z0 = 120π Ω in m.k.s.
units, and αp = πp/h , γ2

p = (ω/c)2 − α2
p. The sum

on p corresponds to modes in the Fourier expansion with
respect to y. The factor Λp depends on the vertical dis-
tribution H(y), and is zero for even p if H is even. For
a Gaussian distribution with r.m.s. width σy ¿ h, and
the y-average to define Ê taken over [−σy , σy], we have
Λp = 2 sin(x)e

−x2/2/x , x = αpσy.



The impedance at fixed integer n is defined as an ana-
lytic function of ω in the upper half-plane by first defin-
ing γp(ω) = ((ω/c)2 − α2

p)
1/2 as an analytic function.

We take γp(u) to be positive for u > αpc, then define
γp(ω) by analytic continuation to Im ω ≥ 0; it follows
that γp(−u) = −γp(u) , u > αpc. This specification
makes Z(n, ω) analytic and bounded for Im ω ≥ v > 0.
The boundedness follows from integral representations and
asymptotic formulas [3]. On the real axis Z is not bounded,
having poles at the wave guide cutoffs, ω = ±αpc. These
points are frequency thresholds for the advent of propa-
gating waves with transverse mode number p. In (5) the
poles are from γ−2

p in the coefficient of J|n|Y|n| and from
J ′
|n|Y

′
|n|. The poles alone make the following contribution

to the impedance, for |n| > 0:

Z∗(n, ω) = i
Z0πc

2β0h

∑

p

Λp

×

[

|n|β0 − sgn(n)αpR

ω − αpc
+
|n|β0 + sgn(n)αpR

ω + αpc

]

,

(6)

where sgn(n) is the sign of n. There is no pole for
n = 0. The poles do not show up as infinities or even
sharp peaks in Z(n) = Z(n, nω0), since Z∗(n, nω0) =
iZ0(πR/β0h)

∑

p Λp is bounded and independent of n.
From (2) and the definition of Z we get the wake voltage

V by the inverse Fourier/Laplace transform as

V (θ, t) = −2πRE(θ, t) =

ω0Q
∑

n

einθ
∫

Im ω=v

dωe−iωtZ(n, ω)

×
1

2π

∫ ∞

0

dt′ei(ω−nω0)t
′

λn(t
′) . (7)

If we substitute the rigid bunch current instead of (2) in
(7), we get (1) with the identification Z(n) = Z(n, nω0).
We cannot be sure that the ω-integral in (7) exists without
some assumption on λn, since Z(n, u + iv) is bounded
but nonvanishing as |u| → ∞; see [3]. We assume that
λn(t) ∈ C(2)(−∞,∞), i.e., it has a continuous second
derivative on the real line. Then since λn(t) = 0 , t < 0,
it follows that λ(k)

n (0) = 0 , k = 0, 1, 2. This allows two
partial integrations with vanishing boundary terms, so that
the t′-integral takes the form

−
1

(ω − nω0)2

(
∫ t

0

+

∫ ∞

t

)

dt′ei(ω−nω0)t
′

λ′′n(t
′) , (8)

which is O(u−2) , u → ∞. Consequently, the ω-integral
converges absolutely. Moreover, the second term in (8)
contributes nothing to (7), since it is analytic for Im ω =
v > 0 and is less in magnitude than M exp(−vt)/|ω|2 for
some constant M . Since Z(n, ω) is analytic and bounded
for Im ω > 0, we can replace the ω-integral by an integral
over the semi-circle at infinity, which is zero, thanks to de-
cay of the integrand as |ω|−2. Thus causality is satisfied,

since future values of the charge density do not enter:

V (θ, t) = −ω0Q
∑

n

einθ
∫

Im ω=v

dωe−iωtZ(n, ω)

×
1

(ω − nω0)2
1

2π

∫ t

0

dt′ei(ω−nω0)t
′

λ′′n(t
′) . (9)

One could attempt a calculation of V by direct numeri-
cal evaluation of the two integrals in (9), but that would be
expensive and would involve many insignificant contribu-
tions. Instead we note that the t′-integral is expected to be
concentrated (for small v) near u = nω0. Outside such a
neighborhood the integral is small by virtue of oscillations.
Moreover, the second order pole at ω = nω0 also tends to
concentrate the ω integral (i.e, u-integral) near u = nω0.
Consequently, it makes sense as a first approximation to
replace Z(n, nω) by Z(n, ω0), and that allows us to com-
pute the ω-integral by closing the contour in the lower half-
plane. The factor

−
1

2π
e−iωt

∫ t

0

ei(ω−nω0)t
′

λn(t
′)dt′ (10)

is an entire function of ω, bounded in the lower half-plane,
and the residue of the second order pole is just the deriva-
tive of (10), evaluated at nω0. An integration by parts
using λn(0) = λ′n(0) = 0 then gives the expected low-
est approximation, namely (1) with λn → λn(t), and
Z(n) = Z(n, nω0).

For the next approximation one might think of expand-
ing Z(n, ω) in (9) in a Taylor series about ω = nω0.
This cannot succeed for nω0 close to ±αpc, because of
the poles of (6). We can, however, write Z(n, ω) =
Z̃(n, ω) + Z∗(n, ω) and compute the contribution of the
pole term Z∗ to the ω-integral by the method of residues.
The smooth remainder Z̃ can later be expanded in a Tay-
lor series about nω0. For the integral of the pole term it is
best to first undo the two partial integrations in t′, so that
the ω-integral of (9) has just first order poles at ±αpc. The
boundary terms vanish as is seen by closing their integrals
by a circle at infinity in the upper half-plane. The integral
over Z∗ is then found by closing the contour in the lower
half plane, and the result is

−
Z0πRe−inω0t

2β0h

∑

p

Λp

∫ t

0

λn(t
′)dt′

×

[

A(p, n)eiA(p,n)(t′−t) +B(p, n)eiB(p,n)(t′−t)

]

,

(11)

where A(p, n) = αpc− nω0 , B(p, n) = −αpc− nω0.
Having accounted exactly for the poles, we account ap-

proximately for the remainder Z̃ by a Taylor expansion,
Z̃(n, ω) = Z̃(n, nω0) + ∂Z̃(n, nω0)/∂ω (ω − nω0) +
· · · . To evaluate the contribution of the k-th order term
of the expansion to (9), we have to assume λn(t) ∈
C(k+2)(−∞,∞). Taking the expansion just to the first or-
der, we suppose that λn has a continuous third derivative,



Figure 1: Real and imaginary parts of ω0∂Z̃(n, nω0)/∂ω
in ohms, plotted versus n

and do an additional integration by parts on t′ to get a fac-
tor (ω − nω0)

−3, thus a behavior O(|ω|−2) in the lower
half-plane for the first order Taylor term, enough to close
the contour in the lower half-plane. The zeroth order Tay-
lor term contains a contribution from −Z∗(n, nω0) which
is finite but alarmingly large. This caused a headache un-
til we realized that it is exactly cancelled by a part of (11),
namely the boundary term in an partial integration in which
the integral over λn is replaced by an integral on λ′n. In-
voking this cancellation, we state our proposal for the wake
voltage with main corrections to the lowest approximation:

V (θ, t) = 2ω0QRe
∞
∑

n=1

ein(θ−ω0t)

[

Z(n, nω0)λn(t)

+i
∂Z̃

∂ω
(n, nω0)λ

′
n(t)− i

Z0πR

2β0h

∑

p

Λp

×

∫ t

0

dt′λ′n(t
′)

(

eiA(p,n)(t′−t) + eiB(p,n)(t′−t)

)]

.

(12)

The integral in (12) represents retardation effects associ-
ated with wave guide cutoffs. It is expected to be largest
at those (p, n) for which A(p, n) = αpc − nω0 is small,
giving a primarily reactive effect. The presence of the in-
tegral does not add a lot to the cost of a dynamical calcu-
lation, since one can store each of the integrals as a ma-
trix M(p, n), and update that matrix at each time step δt
by adding the integral from t to t + δt. This requires a
few floating point operations for each (p, n). Fig. 1 shows
the function ∂Z̃(n, nω0)/∂ω that appears in the first order
Taylor term, multiplied by ω0. Parameters are for a com-
pact storage ring studied in [3]: R = 25 cm , h =
1 cm , E0 = 25 MeV.

In Fig.2 we report a first attempt at evaluating formula
(12) in the context of a time-domain integration of the
Vlasov equation. Beside the r.f. bucket, the force is en-
tirely from (12). The machine parameters are those of [3].
The time parameter is τ = ωst, where ωs is the circular
synchrotron frequency. To model the smooth switching
on of the current assumed above, we increase the charge
from zero, multiplying the final charge Q by the function
f(τ) = (1 − (τ − 1)4)4. The final charge at τ = 1 is
close to the value for onset of a CSR-induced instability
(I = 0.98pC/V in the notation of [3]). We assume that
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Figure 2: Dimensionless wake force IF (q) (in notation of
[3]) proportional to (12), at successive times. First term
on left graph, second (solid) and third (dashed) on right.
q = (θ − ω0t)R/σz , σz = bunch length.

λ′n(t) is given by a simple divided difference, the time in-
crement being that of the Vlasov integration. The curves
on the left in Fig.2 are from the first term in (12) at succes-
sive times (up to about 4/10 of a synchrotron period). The
solid and dashed curves on the right are from the second
and third terms, respectively. The period of oscillations in
the third term is exactly what one expects from peaking of
the integral at n such that A(1, n) = 0. After initial tran-
sients the corrections to the first term are fairly small. It
remains to be seen whether they remain small during full
development of the instability, at somewhat later times.
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